skip to main content


Search for: All records

Creators/Authors contains: "Nelson, Bruce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet and dry seasons in Central Amazonia to show that plant phenology varies strongly across vertical strata in old-growth forests, but is sensitive to disturbances arising from forest fragmentation. In combination with continuous microclimate measurements, we find that when maximum daily temperatures reached 35 °C in the latter part of the dry season, the upper canopy of large trees in undisturbed forests lost plant material. In contrast, the understory greened up with increased light availability driven by the upper canopy loss, alongside increases in solar radiation, even during periods of drier soil and atmospheric conditions. However, persistently high temperatures in forest edges exacerbated the upper canopy losses of large trees throughout the dry season, whereas the understory in these light-rich environments was less dependent on the altered upper canopy structure. Our findings reveal a strong influence of edge effects on phenological controls in wet forests of Central Amazonia. 
    more » « less
  2. Abstract

    Bamboo‐dominated forests (BDF) extend over large areas in the drought‐prone Southwestern Amazon, yet little is known about the dynamics of these ecosystems. Here, we investigate the hypothesis that bamboo modulates large‐scale ecosystem dynamics through competition with coexisting trees for water.

    We examined spatio‐temporal patterns of remotely sensed metrics (Enhanced Vegetation Index [EVI], Normalized Difference Moisture Index [NDMI]) in >300 Landsat images as proxies for canopy leaf phenology and water content at two time scales: (1) a complete bamboo life cycle (~28 years), and (2) the seasonal cycle; and at two spatial scales: (a) comparing adjacent areas of BDF vs.Terra‐firmeforests (TFF) to investigate regional dynamics, and (b) comparing the vegetation classes of bamboo, trees in BDF, and trees in TFF to investigate the effects of bamboo on coexisting trees.

    At the regional scale, BDF showed higher EVI (leaf area density) and lower NDMI (water content) than nearby TFF but these differences disappeared as bamboo died, suggesting a strong influence of bamboo life stage in the functioning of these forests. BDF seasonal cycle showed a bimodal EVI pattern as trees and bamboos had asynchronized leaf production peaks.

    At the scale of vegetation classes, trees in BDF showed lower NDMI (i.e. water content) than trees in TFF except after bamboo mortality, indicating a release from competition with bamboo for water. Canopy water content of trees in BDF was also reduced during bamboo dry‐season greening (increased EVI ~ leaf production) due to increased water demands. Nevertheless, long‐term and seasonal phenology of trees in BDF did not differ from that of trees in TFF suggesting a potential selection for drought‐tolerant trees in BDF.

    Synthesis. Bamboo‐dominated forests have received less attention than other Amazonian forests and their functional dynamics are commonly ignored or misinterpreted. Using remote sensing to characterize forest phenology and water content, we show the distinctive seasonal and long‐term dynamics of BDF and coexisting trees and the importance of bamboo competition for water in shaping this ecosystem. Our results suggest a potential selection for drought‐tolerant trees in BDF since they maintain the same EVI as trees in bamboo‐free forests but with lower water content. A better characterization of BDF and their cyclical dynamics is crucial for accurately interpreting Amazonian forests' responses to extreme climatic events such as high temperatures and droughts.

     
    more » « less